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Abstract

We explore the performance of a nonlinear tuned mass damper (NTMD), which is modeled as a two degree of freedom

system with a cubic nonlinearity. This nonlinearity is physically derived from a geometric configuration of two pairs of

springs. The springs in one pair rotate as they extend, which results in a hardening spring stiffness. The other pair provides

a linear stiffness term. We perform an extensive numerical study of periodic responses of the NTMD using the numerical

continuation software AUTO. In our search for optimal design parameters we mainly employ two techniques, the

optimization of periodic solutions and parameter sweeps. During our investigation we discovered a family of detached

resonance curves for vanishing linear spring stiffness, a feature that was missed in an earlier study. These detached

resonance response curves seem to be a weakness of the NTMD when used as a passive device, because they essentially

restore a main resonance peak. However, since this family is detached from the low-amplitude responses there is an

opportunity for designing a semi-active device.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The philosophy employed in the design of most building structures in seismic zones involves inelastic and
nonlinear building behavior [1,2]. This design approach mitigates the seismic hazard by allowing the structure
to become damaged. Thus introducing the well-known strength reduction factors [3]. Ideally, in the case of
frame structures, the damage is mostly restricted to the horizontal elements (e.g. beams) rather than the
vertical elements (e.g. columns). Thus, it avoids various local failure mechanisms, such as soft-story failures,
that are highly undesirable. This approach is thought to be cost effective at the design and build stage of a
structure. However, in the case of a significant seismic event the damage caused often imposes considerable
additional cost. It is not unusual to be forced to demolish and completely reconstruct a building after a large
earthquake. Hence, this design philosophy can suffer from significant financial penalties in the event of a
large earthquake. For example the Northridge event (USA, 1994) produced an estimated $12.5 billion in
damages [4].
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.05.018

ing author.

ess: nick.alexander@bristol.ac.uk (N.A. Alexander).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.05.018
mailto:nick.alexander@bristol.ac.uk


ARTICLE IN PRESS

Nomenclature

A forcing amplitude
Ae forcing amplitude value at which the

total intensity of the forcing is equal to
the Kanai–Tajimi seismic event

c damping coefficient of building
c2 damping coefficient of NTMD
D seismic event duration (t)
F ðoÞ frequency dependent forcing amplitude
G0 Kanai–Tajimi amplitude parameter
h building height
HsðoÞ support/building transfer function
HktðoÞ Kanai–Tajimi spectrum
kb building flexural stiffness function when

subject to lateral movement
kl stiffness of one of the linear spring

components of NTMD
kg stiffness of one linear spring used as part

of geometric nonlinear component of
NTMD

kN stiffness of nonlinear spring component
of NTMD

k2 stiffness of both linear spring compo-
nents of NTMD

m building mass per unit height
m2 mass of mass damper attachment
t time
x0ðtÞ ground displacement
x1ðtÞ displacement of top of building (absolute

ordinate)
x2ðtÞ displacement of NTMD (absolute ordi-

nate)
yðz; tÞ building displacement
y1ðtÞ building displacement (relative to foun-

dations) at top of building
y2ðtÞ displacement (relative to foundations) of

NTMD

a equation adjustment parameter, a ¼ 1 in
this paper, a ¼ 0 in Ref. [15]

� mass ratio of NTMD to building.
g1 ratio of critical damping of building
g2 ratio of critical damping of NTMD
gg Kanai–Tajimi averaged damping ratio of

near surface geology
fðzÞ building displacement shape function

(normalized)
r participation parameter, this can be

obtained from a modal analysis of the
building structure using finite element
method. In this paper r ¼ �4=10 is used

t scaled time
o ratio of forcing frequency to building

natural frequency
o1 natural circular frequency of building
o2 frequency parameter (linear component

of NTMD)
O ratio of frequency parameter (linear

component of NTMD) and building
natural frequency

of forcing frequency
og Kanai–Tajimi averaged natural fre-

quency of near surface geology
Og ratio of Kanai–Tajimi averaged natural

frequency of near surface geology to
building natural frequency

oN frequency parameter (nonlinear compo-
nent of NTMD)

ON ratio of frequency parameter (nonlinear
component of NTMD) and building
natural frequency

O� value of O for which the linear TMD
becomes optimal, O� � 0:9215.
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There are many alternative approaches that have been advocated, such as isolating the structure from the
ground motion, restricting the damage to sacrificial and replaceable elements, introduction of viscous/friction
dampers, use of linear tuned mass dampers, etc. These alternate strategies seek to mitigate the seismic hazard
without damaging the building structure in a way that will require a costly retrofit or rebuild.

This paper shall consider the tuned mass damper. The mechanics of the linear tuned mass damper (TMD) is
well-known and extensively studied, even to the present [5–9]. A first problem encountered when employing a
TMD is that it must be tuned to a particular modal frequency of the building, typically the first mode.
Unfortunately, the building’s natural frequency can change with time. This is due to changes in building use/
occupancy that result in a variation of live load distribution and in changes to non-structural elements. These
changes adjust the building’s mass and stiffness that modify its modal frequencies. Correct tuning is vital for
effective performance of a TMD and this is dependent on accurate knowledge of the building’s natural
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frequency. The second problem is that it is only effective over a narrow frequency bandwidth. Outside this
frequency bandwidth it can be ineffective and possibly counter productive (depending on how it is tuned), that
is, it can make the structure’s response worse. Seismic ground motion normally has a broad frequency
bandwidth. This critically undermines the effectiveness of employing a TMD in a building that is subject to a
seismic event.

In this paper a nonlinear tuned mass damper (NTMD) is considered. This system was proposed in Ref. [15].
This follows on from the work on the energy pumping phenomenon in Ref. [16–19] and others. Ref. [19]
provides a useful summary of historical papers in this field. It is suggested in Ref. [15] and by others that there
are several advantages of the NTMD over the TMD namely (i) the proposed NTMD can be effective over a
much broader range of frequencies than a linear TMD, (ii) the proposed NTMD does not suffer from the
problem of amplification just outside the target bandwidth, (iii) the proposed NTMD requires smaller added
mass than the TMD to be effective and (iv) the proposed NTMD is much more effective at reducing the
transient vibrations at large amplitude than the TMD. However the complexity of the performance domain of
the proposed NTMD was not fully explored. This is vital in the design of such a system in the real world. This
paper shall more fully explore the performance of an NTMD when applied to a building that is subject to a
seismic event. This exploration shall be undertaken using numerical continuation software commonly
employed in the nonlinear dynamics community, Doedel et al. AUTO [10]; see also Refs. [11–14]. This is in
contrast to various analytical approximations made in Refs. [15–19].

2. Equations of motion

2.1. Applying classical mechanics

The configuration of the NTMD is outlined in Fig. 1. It is composed of four springs, two acting in a
geometric way to harden the system, and two acting in a linear way. Thus, it is a hardening Duffing oscillator
[20,21]. There is no pre-stressing of these springs. An alternative design that follows [15] has only the two
geometric springs that can be pre-stressed to introduce a linear spring stiffness term. However, the exact
formulation is somewhat more complex (mathematically) than the one proposed here, because the coefficient
of the linear and cubic stiffness terms are not independent of each another. Thus, Fig. 1 is conjectured as it
allows more freedom to exploit the full range of parameters. The nonlinear elastic force f s—deflection x

relationship is

f s ¼ ð2klÞxþ 2 kgx�
2kgLxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ x2

p � ð2klÞxþ
kg

L2

� �
x3 þOðx5Þ, (1)

which was shown to be approximately cubic within the scope of its intended use [15]. Its strain energy is

Us ¼
1

2
k2x

2 þ
1

4
kNx4; k2 ¼ 2kl ; kN ¼

kg

L2
. (2)
Fig. 1. Nonlinear tuned mass damper (NTMD).
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Fig. 2. Building structure with nonlinear tuned mass damper.
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Consider a multi-story building with NTMD as sketched in Fig. 2. This building is subject to horizontal
ground displacements x0ðtÞ. Assuming that the relative translational displacement of the building yðz; tÞ can be
expressed as the product of spatial and temporal functions yðz; tÞ ¼ y1ðtÞfðzÞ we obtain a single mode and
single degree of freedom representation of the building. Note that z is a normalized ordinate that equals one at
the top of the building. The shape function fðzÞ is normalized such that fð1Þ ¼ 1. Hence, y1 is the relative
displacement of the top of the building.

The kinetic and potential energies and the Rayleigh dissipative function of the system are, respectively,

T ¼
1

2
h

Z 1

0

mð _yþ _x0Þ
2 dzþ

1

2
m2ð _y2 þ _x0Þ

2

¼
1

2
m1 _y

2
1 þm12 _y1 _x0 þ

1

2
m13 _x

2
0 þ

1

2
m2ð _y2 þ _x0Þ

2, (3)

U ¼
1

2

1

h3

Z 1

0

kby002 dzþ
1

2
k2ðy2 � yð1; tÞÞ þ

1

4
kN ðy2 � yð1; tÞÞ4

¼
1

2
k1y2

1 þ
1

2
k2ðy2 � y1Þ

2
þ

1

4
kNðy2 � y1Þ

4, (4)

R ¼
1

2
h

Z 1

0

c _y002 dzþ
1

2
c2ð _y2 � _yð1; tÞÞ2

¼
1

2
c1 _y

2
1 þ

1

2
c2ð _y2 � _y1Þ

2, (5)

where

m1 ¼ h

Z 1

0

mf2 dz; m12 ¼ h

Z 1

0

mfdz; m13 ¼ h

Z 1

0

mdz, (6)

c1 ¼
1

h3

Z 1

0

cf002 dz; k1 ¼
1

h3

Z 1

0

kbf
002 dz. (7)

The Euler–Lagrange equations of motion are:

€x1 þ 2g1 _x1 � 2�g2Oð _x2 � _x1Þ þ x1 � a�O2ðx2 � x1Þ � �O2
N ðx2 � x1Þ

3
¼ r €x0 þ 2g1 _x0 þ x0;

€x2 þ 2g2Oð _x2 � _x1Þ þ aO2ðx2 � x1Þ þ O2
Nðx2 � x1Þ

3
¼ 0;

)
(8)
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which are stated in absolute coordinates x1 ¼ y1 þ x0 and x2 ¼ y2 þ x0 for simplicity. Note that we rescaled
time to t ¼ o1t. The equations of motion (8) contain a number of free parameters, which are related to design
parameters via the relations (9)–(11).

� ¼ m2=m1;o2
1 ¼ k1=m1;o2

N ¼ kN=m2;o2
2 ¼ k2=m2, (9)

g1 ¼ c1=2o1m1; g2 ¼ c2=2o2m2;O ¼ o2=o1;ON ¼ oN=o1, (10)

r ¼ 1�m2=m1; t ¼ o1t. (11)

The differences between Eqs. (8) and Eqs. (3) in Ref. [15] are twofold. Firstly, a linear stiffness term is
included for the attached NTMD. This was absent in Eq. (3) in Ref. [15]. Thus, the aim is to fully explore the
role of this linear spring term as well as the cubic spring stiffness term. The second difference is a subtle one,
the linear damping of the NTMD is here a function of the frequency parameter O. In Ref. [15] the linear
damping term was assumed to be independent of O. The rationale in employing a constant damping coefficient
term with respect to frequency in Ref. [15] was pragmatic as the experimental tests were performed on a model
with a fixed geometry. However, here a more general study is performed and it is likely that a constant ratio of
critical damping may be targeted by a designer rather than a constant damping coefficient as in Ref. [15]. In
order to have Eq. (3) in Ref. [15] as a special case of Eq. (8) here, we introduced the parameter a 2 f0; 1g. If we
set a ¼ 0 we can directly relate the parameters between the two model equations. If we set a ¼ 1 we can
perform calculations for our more realistic model. For the majority of our computations we use a ¼ 1.

2.2. Idealized ground motion

In order to perform a full parametric continuation of all solutions of the nonlinear system it is expedient to
assume that the ground motion has the form

x0 ¼ bðoÞ sinðotþ xÞ; o ¼ of =o1, (12)

where of is the forcing frequency and o is the forcing frequency to building structure frequency ratio. This
monochromatic form is clearly not an exact substitute for an earthquake. However, if bðoÞ is proportional to
the power spectrum of a typical earthquake time history it can be viewed as a coarse first approximation. This
bðoÞ is chosen such that Eq. (12) provides the same total power to the nonlinear system as a design
earthquake.

Kanai [22] and Tajimi [23] proposed a smoothed power spectrum estimate for ground displacement time
histories; this is described in Ref. [24]. We follow this approach and use the frequency-dependent forcing
amplitude

bðoÞ ¼ AHktðoÞ; HktðoÞ
2
¼

G0 1þ ð2ggðo=OgÞÞ
2

� �
1� ðo=OgÞ

2
� �2

þ 2ggðo=OgÞ
� �2 , (13)

in all our computations, where Og ¼ og=o1. Here, we included the amplitude parameter A to allow a variation
in the event magnitude. The function Hkt is effectively the linear single degree of freedom transfer function for
the soil layer below the structural foundations (often termed the near surface geology); where og and gg are its
natural frequency and ratio of critical damping.

2.3. Physical interpretation of forcing parameter A

The Kanai–Tajimi spectrum is a power spectrum (in the Fourier frequency domain) rather than in the
time domain. This raises the question of how should the forcing parameter be interpreted when applied in
the time-domain.
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Assume that the monochromatic sinusoidal function x0ðtÞ has a finite duration of D seconds. The total
intensity (power) of x0ðtÞ is

Ix ¼ ðAHktðoÞÞ
2

Z D

0

sinðotÞ2 dt ¼
1

2
ðAHktðoÞÞ

2D. (14)

Assuming that D ¼ 2pn=o, where n 2 N, the total power of the Kanai–Tajimi event is then

Ikt ¼

Z 1
�1

jHktðoÞj2 do ¼
pG0Ogð1þ 4g2gÞ

2gg

. (15)

If the total intensity of the Kanai–Tajimi event is expressed in the monochromatic sinusoidal function then by
Parseval’s theorem Ix ¼ Ikt, hence,

Ae ¼
1

HktðoÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pG0Ogð1þ 4g2gÞ

ggD

s
. (16)

Subsequently, in this paper, parameter A is used as a variable for parametric continuation. When A ¼ Ae

(obtained from Eq. (16)) the total intensity of the forcing function equals the total intensity of the
Kanai–Tajimi event.

The graphical representation of Eq. (16) is given in Fig. 3. The minimum of Ae occurs at of � 0:91og which
is the resonance condition of the soil/rock column that is below the structure itself. In this case the minimum
value is Ae ¼ 2:33, though it should be pointed out that this is a function of the Kanai–Tajimi parameters
employed in this example. Thus, at or about the linear resonance condition of the structure, that is, o � 1, the
value of Ae is somewhere between 2:33 and 4:27.

2.4. Final form of equations of motion

Using the monochromatic ground displacement x0ðtÞ as above we obtain r €x0 þ 2g1 _x0 þ x0 ¼ F ðoÞ sinðotÞ
as the right-hand side of Eq. (8). Thus, the forcing amplitude term F becomes

F ðoÞ ¼ AHktðoÞHsðoÞ, (17)

where HsðoÞ is the support/building transfer function

ðHsðoÞÞ
2
¼ ð1� ro2Þ

2
þ ð2g1oÞ

2. (18)
0 1 2 3 4 5
2

3

4

5

6

7

8

9

10

ω

A
e

ω1 / 2π = 2 Hz ~ 5 Storeys 
ω1 / 2π= 1 Hz ~ 10 Storeys

Fig. 3. Example of variation of Ae vs. forcing frequency ratio o for a range of structures o1. Kanai–Tajimi parameters: rock site

G0 ¼ 0:07, og ¼ 27, gg ¼ 0:34, D ¼ 20 s.
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We combine Eqs. (13), (17), (18) and (8) to obtain the final form of the system of equations

€x1 þ 2g1 _x1 � 2�g2Oð _x2 � _x1Þ þ x1 � a�O2ðx2 � x1Þ � �O2
N ðx2 � x1Þ

3
¼ F ðoÞ sinðotÞ;

€x2 þ 2g2Oð _x2 � _x1Þ þ aO2ðx2 � x1Þ þ O2
Nðx2 � x1Þ

3
¼ 0:

)
(19)

The forcing parameters are amplitude A and frequency ratio o .
3. Computational analysis

3.1. Preliminaries

All numerical computations were performed with AUTO [10] and the figures were drawn with gnuplot [25]
and MATLAB [26]. In our study, we are concerned with finding design parameters of an NTMD for which the
building has low-amplitude responses over a wide range of forcing frequencies. We consider the worst-case
scenario that the structure’s first mode frequency coincides with the frequency at which the ground motion of
an Kanai–Tajimi event has its largest amplitude. For simplicity we use the model equations (19) exactly as
stated, even though x1 and x2 include the ground motion. Although this does lead to a slight shift in the
amplitudes of the responses, the qualitative features we are looking for remain the same.

Due to the complexity of the system a range of output measures are employed for emphasizing specific
aspects of our model. Most commonly we use the L2 norm

kx1k
2
2 ¼

1

T

Z T

0

x1ðtÞ
2 dt (20)

of an individual generalized coordinate over one period T as a measure of the response amplitude. This norm
can be interpreted as a ‘generalized amplitude’ and is identical to the amplitude for harmonic oscillations.
However, its definition carries over to general oscillations, which we will encounter in NTMDs. For
comparison we sometimes show the absolute maximum response amplitude, which is given by the supremum
norm

kx1k1 ¼ max
t2½0;T �

jx1ðtÞj (21)

over one period. Some details of our results are best represented using the L2 norm

kuk22 ¼ kx1k
2
2 þ k _x1k

2
2 þ kx2k

2
2 þ k _x2k

2
2 (22)

over the full solution vector over one period. For the most part, in the present study kuk2 is good for showing
coexistence of solutions. The measure kx1k2 is used for optimizations because the designer is mainly interested
in the response of the building structure and it is a smooth function of the system’s parameters. Furthermore,
it behaves very similar to kx1k1, which is conventionally what a designer wants to minimize. We give evidence
for these claims in Figs. 6 and 7.

System (19) has a four-dimensional phase space when stroboscopic Poincaré sampling ðt 2 ½2pn=o : n 2 N�Þ

is employed. It has seven system parameters: the structural parameters O, ON , g1, g2, � and the forcing
parameters A and o. Clearly, an exhaustive exploration of this high-dimensional parameter and phase space is
a challenge. This is especially the case when graphical representations are required for interpretation. In this
paper, the influence of damping parameters is not explored. Thus, we fix the structure’s damping ratio at
g1 ¼ 0:02, which is a typical value for a steel framed structure that undergoes no inelastic behavior [27]. We set
the NTMD’s damping ratio as high as could be achieved without any specialized viscous damper that would
require maintenance, that is, g2 ¼ 0:05. We keep the mass ratio of added mass to structural mass constant at
� ¼ 0:1. This is the largest value that we assume to be feasible as the static capacity of the structure is limited.
We study families of frequency response curves for which we vary the forcing amplitude in A 2 ½0; 5� and the
forcing frequency in o 2 ½0; 5�.
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3.2. Effect of the frequency-dependent forcing amplitude F ðoÞ

For a purely mathematical investigation one would use the constant amplitude forcing term F ðoÞ ¼ f ,
which is much simpler to deal with than the forcing term in Eq. (19). However, a close look at the forcing term
reveals that, compared with constant forcing, the proposed forcing is merely a coordinate transformation in
parameter space. That is, the qualitative properties of the equation under investigation do not change, but the
quantitative properties, like response amplitudes, will be different. The aim here is a parameter study that
provides useful information for designing a nonlinear tuned mass damper for the purpose of reducing
vibrations of buildings during earthquakes. As a frequency-dependent forcing might influence design decisions
it is taken into account. Furthermore, since we use numerical rather than analytical methods the more
complicated forcing term does not impose any restriction to our subsequent investigations.

This interpretation, that a frequency-dependent forcing amplitude can be viewed as a change of coordinates
in parameter space is illustrated in Figs. 4 and 5 . Fig. 4 shows the amplitude of ground motion in meters of an
event with event magnitude A ¼ 1 according to the Kanai–Tajimi spectrum. Since the forcing term in Eq. (19)
contains only the two parameters event magnitude A and forcing frequency o, only these two parameters are
affected by the transformation—all other parameters keep their original meaning. Fig. 5 shows the constant-A
coordinate lines of the transformation ðo;AÞ2ðo;F Þ in the ðo;F Þ-parameter plane. They are slightly different
from horizontal lines, which would represent constant forcing. This frequency dependence will lead to a
change of shape of frequency–response curves compared with those for constant forcing. Note the peak
around the normalized resonance frequency o ¼ 1. We will observe quantitative differences in this important
range of frequencies.

To get a first impression of what influence the variable forcing term has, the well-known frequency response
function of a linear tuned mass damper is computed; see Fig. 6. For this computation we chose the model
parameters A ¼ 1, ON ¼ 0, � ¼ 0:1, g1 ¼ 0:02 and g2 ¼ 0:05 and computed the responses for o ¼ 0:2 . . . 1:8
and O ¼ 0:2 . . . 1:8. Fig. 6 shows two different visualizations of the results. Fig. 6a is a surface plot of the
amplitude of the primary structure as a function of the two parameters o and O. Observe the ‘valley of
suppression’ of the oscillations of the primary structure. Fig. 6b is an intensity plot in logarithmic scale.
Higher amplitudes correspond to darker shading as indicated with the color bar. The main difference to the
traditional result (obtained with constant forcing amplitude) is that the gradient of the surface in Fig. 6a is
much steeper close to the resonance frequency o ¼ 1. Fig. 6c shows a comparison of the structure’s response
0

0.25

0.5

0.75

0 1 2 3 4 5 6 7 8 9 10
ω

H
(ω

)

Fig. 4. Amplitude of ground motion depending on the frequency for the Kanai–Tajimi spectrum with an event magnitude of A ¼ 1.

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10
ω

F

Fig. 5. The frequency-dependent forcing amplitude is equivalent to a coordinate transformation in the ðo;F Þ parameter plane. The curve

with event magnitude A ¼ 1 is emphasized.
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Fig. 6. Surface plot (a) and intensity plot (b) of the frequency–response function of the primary structure for different design parameters O
of a linear TMD for event magnitude A ¼ 1. Panel (c) shows the frequency response curve for O ¼ 0:925, which is nearly optimal and

highlighted as a black curve in panels (a) and (b). The solid curve is kx1k2 and the dash-dot curve is kx1k1.
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for a nearly optimal TMD, illustrating that the qualitative behavior of the supremum and the L2 norm are
similar.

3.3. Initial parameter continuation sweeps

As an initial investigation two parameter sweeps were performed: (i) The left-hand column in Fig. 7 is a
frequency sweep for varying forcing frequency o and fixed forcing amplitude A of the fundamental period-1
solutions. (ii) The right-hand column of this figure is an amplitude sweep at fixed frequency. The line type
indicates stability: solid lines denote stable periodic solutions and dotted lines denote unstable ones. Our
notation follows the AUTO [10] classifications: a diamond marks a limit point (LP) or saddle-node bifurcation
point and a circle marks a torus (TR) or Neimark–Sacker bifurcation point. Note again that Figs. 7(b), (c),
and (e), (f), show that the amplitude measure L2 norm is qualitatively similar to the supremum norm.

To explain these figures, consider what happens to the two resonance peaks of the linear TMD system as
sketched in Fig. 8. As we activate and increase the nonlinearity while decreasing the linear spring stiffness to
zero, the higher-frequency resonant peak drops and bends towards the higher frequencies; see Fig. 8(b). This is
a classical feature of a hardening spring system. A torus bifurcation and a saddle-node bifurcation act
independently to limit and reduce the amplitude of this resonance peak. In this regime the energy of the
periodic response oscillations is mainly transferred from the structure to the NTMD. This is excellent in terms
of reducing the amplitude of the structure’s response.

However, in the process of this parameter change the lower-frequency resonant peak gains amplitude and
detaches from the continued path of the higher frequency resonance. This is what we observe in Fig. 7(a) and is
an important feature of the frequency response curve. Unfortunately, this behavior is not necessarily picked
up by employing a harmonic balance method. An asymptotic analysis, as carried out in Ref. [15], finds the
small-amplitude responses locally connected to the solution u ¼ 0 for A ¼ 0. These are the solutions on the
lower branch of the response curve, but not necessarily all responses. In fact, even with numerical continuation
it is easy to miss this feature. We discovered it only after a substantial number of further frequency sweeps at
different A values, whereby we obtained the complete response surface with respect to A and o shown in
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Fig. 7. Bifurcation diagrams of the response curves highlighted in Fig. 9 using different amplitude measures. Observe the detached

response curve best visible in panel (a). Parameters: O ¼ 0, ON ¼ 0:1, � ¼ 0:1, g1 ¼ 0:02, g2 ¼ 0:05. Notation: LP is a limit point (saddle-

node bifurcation) and TR is a torus (Neimark–Sacker) bifurcation. Panels (a) to (c) are continuation plots showing different amplitude

measures of the response curves as a function of the forcing frequency. Similarly, panels (d)–(f) show the same amplitude measures as a

function of the forcing amplitude.
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Fig. 8. Schematic comparison of TMD and NTMD (without linear stiffness term as in Ref. [15]). The response of the primary structure

alone is compared with (a) TMD attached, (b) NTMD attached (low forcing amplitude) and (c) NTMD attached (high forcing amplitude).

Fig. 9. Three-dimensional nonlinear response surface for O ¼ 0, ON ¼ 0:1, � ¼ 0:1. The thumbnail picture in the top-left corner illustrates

the domains of coexistence of several response solutions. In the light gray areas there exists at least one and in the dark gray areas there

exist at least three solutions. The black lines on the surface are response curves shown in detail in Fig. 7.
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Fig. 9. At A ¼ 0:5 it appears that the lower resonance response curve is detached from the higher resonance
response curve. This figure also shows that all these responses are part of some continuous response surface
that is now a multivalued function (manifold). Note that for higher forcing amplitudes the detached responses
reconnect as illustrated in Fig. 8(c).
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In our subsequent study, we explore the influence of the nonlinear and linear spring stiffnesses over a large
range of values. The aim is to determine whether it is possible to design the dynamics of the system such that
we can eliminate this lower-frequency resonance peak in some way as well.
3.4. Exploring local extrema

In our proposed NTMD design we have two fundamental system parameters, the linear and the nonlinear
spring stiffness while a TMD has only one. Given this additional freedom to design an NTMD a first question
that springs immediately to mind is: is it possible to tune the two spring stiffnesses in such a way that an
NTMD will always outperform a TMD? In order to tackle this problem we use an advanced feature of the
continuation package AUTO [10], namely, the optimization of periodic solutions. Starting with a periodic
solution that has an extrema with respect to some objective function one can successively add free parameters
and continue extremal periodic solutions. In our case we choose the L2 norm kx1k2 as the objective function,
that is, we look for periodic responses with extremal amplitudes. Our ultimate goal is to find a set of spring
stiffnesses for which all extremal solutions have amplitudes below the peaks of a TMD, leading to an NTMD
that is superior to an optimal TMD.

To start our investigation we need to find a set of suitable start solutions. We have already seen that the
frequency response curves we deal with are quite complicated. To make sure we do not overlook an important
branch of solutions we performed a couple of parameter sweeps for A ¼ 1, � ¼ 0:1, optimal linear spring
stiffness O ¼ 0:9215 � O� and some nonlinear spring stiffnesses ON 2 ½0; 5�. After reviewing the results we
picked the curve for ON ¼ 3:0, which gave seven start solutions; see Fig. 10a. The large dots signify the
locations of the local extrema with respect to forcing frequency ratio o. Our aim is to produce a diagram that
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Fig. 10. (a) Extrema of the nonlinear response curve for O ¼ 0:9215 � O�, ON ¼ 3:0, A ¼ 1, � ¼ 0:1. (b) Continuation of these extrema

with respect to ON and o. The horizontal dashed line indicates the performance of an optimal TMD.
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shows all extremal solutions as functions of O and ON . Hence, we initiated a first continuation of these seven
extremal solutions with respect to the two parameters ON and o. The result is shown in Fig. 10b. The dashed
horizontal line shows the maximum responses for an optimal TMD.

Starting with points along the curves shown in Fig. 10b we initiated a large number of continuations of
these extrema for selected but fixed values ON 2 ½0; 10� with respect to the linear spring stiffness O 2 ½0; 2�.
These results are not shown here, because they are always the same: No matter what value of O we chose,
adding the slightest amount of nonlinearity to the system leads to high-amplitude responses in the same way as
shown in Fig. 10b. This suggests that it is not possible to bound all responses of an NTMD below the
maximum responses of a linear TMD by adjusting either ON and/or O.

This result seems quite discouraging. However, it should be pointed out that these computations try to
employ a very strong property, namely, to bound all responses of an NTMD. We do not consider stability and,
indeed, we are mainly interested in bounding stable responses. Hence, the above investigation should be
considered as a first pass at exploring the problem domain. In a next step we need to include stability. In other
words, we consider the question: is it possible to use the nonlinearity to destabilize the high-amplitude
responses and design an improved NTMD?
Fig. 11. Three-dimensional bifurcation diagrams illustrating the effect of the nonlinear spring in more detail for O ¼ 0:9215 � O�, A ¼ 1,

� ¼ 0:1. Notation: LP is a locus of limit points (saddle-node bifurcations), BP of bifurcation points (pitchfork) and TR of torus

(Neimark–Sacker) bifurcations. Panel (a) is an enlargement of panel (b) that focuses on smaller nonlinear spring stiffnesses parameter ON .
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3.5. Further studies on response surfaces

As observed in the previous section it seems impossible to find parameter values for which the amplitudes of
all response solutions, including the unstable ones are smaller than those of a linear TMD. Therefore, we are
going to conduct an investigation into the stability of these response solutions. The idea is to look for
parameter values for which the large-amplitude responses become unstable and the remaining stable responses
have low amplitude. To this end, we perform a number of scans, that is, we execute a large number of similar
continuations with respect to o, where a second parameter is slowly incremented to scan a two-parameter
plane.

This procedure is illustrated in Fig. 11, which shows two different views on the same response surface for
O ¼ O� � 0:9215; Fig. 11a is an enlargement of Fig. 11b. For ON ¼ 0 we find the response curve of the
classical optimal TMD; cf. Fig. 6. As we add nonlinearity to the system by increasing ON we observe that the
high-frequency resonance peek becomes suppressed, while the amplitude of the low-frequency resonance peak
Fig. 12. Projections of the response surfaces along the o-axis for different O with respect to ON . Parameters: A ¼ 1, � ¼ 0:1, o 2 ½0; 5�.
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grows dramatically. However, we also observe changes in stability as indicated by the line style of the response
curves plotted on the surface; solid marks stable and dashed unstable responses. Namely, we find a ‘window of
instability’ for ON � 0:1 . . . 0:5 inside which the high-amplitude responses become unstable in a Pitchfork
bifurcation (BP for branch point). Thus, there might be a chance to find parameter regimes with the property
that the responses on the lower-frequency resonance peak are unstable and the remaining stable responses
have low amplitude.

To gain as much of an overview as possible we performed a number of scans in O over an extended range
ON 2 ½0; 10� for different linear spring stiffnesses O as shown in Fig. 12. At this point we have to make an
important remark. While it is possible to perform scans which numerically analyze the primary period-one
responses in an automated way with AUTO [10], it is not possible to include bifurcating responses. Hence, the
scans we executed are a first step only and one should use the computed information merely as a guide to
exclude parameter ranges of unfavorable dynamics and continue the investigation with the remaining regions.
The graphs in Fig. 12 show a projection of the response surfaces onto the (response amplitude)–(nonlinear
stiffness) parameter plane. One can consider this as viewing the three-dimensional response surface shown in
Fig. 11 along the forcing frequency ratio o-axis, the surface being transparent. Hence, the thick solid lines
show areas where at least one stable response exists, and the thin dotted line areas where no stable responses
exist on the primary period-one branch.

We find that ‘bands of stability’ seem to sweep down from top left to bottom right for increasing ON .
A structure similar to these ‘bands of stability’ is also present in Fig. 10b. As a guide for comparison we
indicated the performance of the linear TMD with a horizontal line. The figures in the right-hand column
show that for values of linear stiffnesses OXO� there always exist stable responses that have amplitudes larger
than TMD responses. For linear stiffnesses OoO� we find a gap for ON � 0:3 . . . 0:7 where all stable period-
one responses have amplitudes less than the TMD responses.
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We continue our investigation with parameters inside this window of opportunity, namely, O ¼ 0:25 and
ON ¼ 0:5. We recomputed the primary branch of period-one responses and this time followed the bifurcating
solutions; see Fig. 13. Unfortunately, what we find is that the amplitudes of these stable solutions are not
bounded below the TMD line. This is illustrated in more detail in Figs. 13(a)–(c). Panel (c) shows a zoom-in on
the primary branch of period-one responses, which become unstable in a Pitchfork bifurcation. Panel (b)
shows the branch of bifurcating solutions. These become unstable in a period-doubling bifurcation and the
emanating branch is shown in panel (a). Note that the stable responses in panels (a) and (b) have amplitudes
well above the TMD line.

The presence of these stable responses has also been confirmed in time–history simulations. From these
results we have to conclude that stable large amplitude responses exist even in the best parameter window.
Thus, it seems unlikely that one can design an NTMD with cubic and linear stiffness terms that would
outperform an optimal TMD.

4. Discussion and conclusions

It seems highly improbable that the proposed NTMD can generally outperform a TMD, regardless of the
parameters adopted. In this paper a full parametric investigation was made into the influence of the linear
springs and geometric springs (cubic stiffness term).

The conclusion of the numerical studies in this paper seem to contradict work presented in Ref. [15].
As the the analysis in Ref. [15] was based on experimental and theoretical approaches an explanation is
required. The systems analyzed in Ref. [15] and here differ in two respects. Firstly, Ref. [15] investigated a
system without the presence of the linear springs or pre-stress in the geometric springs, that is, with no linear
stiffness terms. Secondly, a constant damping coefficient was adopted rather than a constant damping ratio as
we did here. While these differences are important they are not sufficient to explain the discrepancies in the
findings. We used a system identical to Ref. [15] for direct comparisons. In these direct comparisons between
the results obtained in Ref. [15] using the harmonic balance method (Fig. 17 in Ref. [15]) and the
computational results produced with AUTO (Figs. 7–9) it appears that the detached resonance curve was
undetected in Ref. [15]. Thus, considering the lower sheet of the response surface, it does seem that the NTMD
outperforms the TMD. It was unfortunate that experimental work did not identify this feature. Further
experimental work with different initial conditions might have picked this up.

A full investigation of the initial conditions that are attracted to the lower and upper sheet has not been
undertaken here. This requires the development of a strategy for extending the work on two-dimensional
catchment basins (Ref. [28–31]) to higher-dimensional phase spaces. This is not difficult but it is
computational expensive. Also, it does pose the challenge of graphically representing catchment basins that
are hyper-volumes in R4. This is beyond the scope of this paper, but would be very useful to perform in the
future, because there might be a possibility to manipulate the catchment basins in some way. Such an
investigation could be a starting point for designing semi-active NTMDs.

An intention for introducing the linear springs (linear stiffness terms) was to remove the detached resonance

curve feature in order to obtain a simpler regime in parameter space that still shows good system performance.
It did achieve a removal of this feature. However, after extensive searches of the higher-dimensional parameter
space R7 it appears that there are no good choices of system parameters that lead to an NTMD that is superior
to a linear TMD.

The conclusions are negative, as a passive device, the proposed NTMD in any configuration will generally
not provide an improvement over an optimal linear TMD. From an engineering point of view the cubic
hardening nonlinearity reduces only the amplitude of the higher-frequency resonance. This is achieved by
bending it towards the higher frequencies. However, regardless of the choice of parameters it seems impossible
to limit the response amplitude of the lower-frequency resonance peak.

The presence of a detached resonance curve is identified in the contemporaneous paper [32]; where the
authors attach an NTMD (again without linear stiffness terms) to a two degree of freedom linear structure. In
a sense we have attached the NTMD to a particular linear mode of a multi-degree of freedom building. The
method employed in Ref. [32] is complex-averaging approach that is an analytical approximation. These
approximations show much of the bifurcation structures observed by employing numerical continuation and
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support our findings reported here. They also indicate that the detached resonance curve is a structurally stable
feature in the sense that its occurrence seems independent of the number of modes used for approximations.
These investigations contrast with the harmonic balance and multi-timescales analytical approximations
employed in Ref. [15] that did not identify the detached resonance curve.

It may be possible to view the detached resonance curve feature in a positive light. As the system has
coexisting stable solutions within this range of frequencies, it may be possible to encourage the system to be
attracted to the lower-amplitude responses. There seems to be an opportunity for smart semi-active control. It
might be possible that the application of small forces, carefully timed, destabilizes the higher-amplitude
solutions in the detached resonance curve. Thus, while the presence of the detached resonance is a weakness of
the NTMD (with solely cubic stiffness terms) it may provide an opportunity for constructing semi-active

NTMDs.
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